Rice UDP-Glucose Pyrophosphorylase1 Is Essential for Pollen Callose Deposition and Its Cosuppression Results in a New Type of Thermosensitive Genic Male Sterility W OA

نویسندگان

  • Rongzhi Chen
  • Xiao Zhao
  • Zhe Shao
  • Zhe Wei
  • Yuanyuan Wang
  • Lili Zhu
  • Jie Zhao
  • Mengxiang Sun
  • Ruifeng He
  • Guangcun He
چکیده

UDP-glucose pyrophosphorylase (UGPase) catalyzes the reversible production of glucose-1-phosphate and UTP to UDPglucose and pyrophosphate. The rice (Oryza sativa) genome contains two homologous UGPase genes, Ugp1 and Ugp2. We report a functional characterization of rice Ugp1, which is expressed throughout the plant, with highest expression in florets, especially in pollen during anther development. Ugp1 silencing by RNA interference or cosuppression results in male sterility. Expressing a double-stranded RNA interference construct in Ugp1-RI plants resulted in complete suppression of both Ugp1 and Ugp2, together with various pleiotropic developmental abnormalities, suggesting that UGPase plays critical roles in plant growth and development. More importantly, Ugp1-cosuppressing plants contained unprocessed introncontaining primary transcripts derived from transcription of the overexpression construct. These aberrant transcripts undergo temperature-sensitive splicing in florets, leading to a novel thermosensitive genic male sterility. Pollen mother cells (PMCs) of Ugp1-silenced plants appeared normal before meiosis, but during meiosis, normal callose deposition was disrupted. Consequently, the PMCs began to degenerate at the early meiosis stage, eventually resulting in complete pollen collapse. In addition, the degeneration of the tapetum and middle layer was inhibited. These results demonstrate that rice Ugp1 is required for callose deposition during PMC meiosis and bridges the apoplastic unloading pathway and pollen development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility.

UDP-glucose pyrophosphorylase (UGPase) catalyzes the reversible production of glucose-1-phosphate and UTP to UDP-glucose and pyrophosphate. The rice (Oryza sativa) genome contains two homologous UGPase genes, Ugp1 and Ugp2. We report a functional characterization of rice Ugp1, which is expressed throughout the plant, with highest expression in florets, especially in pollen during anther develop...

متن کامل

Relationship between male sterility and β-1,3-glucanase activity and callose deposition-related gene expression in wheat (Triticum aestivum L.).

In previous studies, we first isolated one different protein β-1,3-glucanase using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry from normal wheat (Triticum aestivum L.) and chemical hybridization agent-induced male sterility (CIMS) wheat. In this experiment, β-1,3-glucanase activity and the expression of a callose deposition-re...

متن کامل

Fertility alteration behaviour of Thermosensitive Genic Male Sterile lines in Rice Oryza sativa L

The utilization of thermosensitive genic male sterility system (TGMS) has great potential for revolutionizing hybrid rice production in tropical countries through simple, less expensive and efficient seed production technology without any limitation in fertility restoration which have been the hindrance for commercial exploitation of heterosis in rice using cytoplasmic genic male sterility syst...

متن کامل

Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.)

A rice genic male-sterility gene ms-h is recessive and has a pleiotropic effect on the chalky endosperm. After fine mapping, nucleotide sequencing analysis of the ms-h gene revealed a single nucleotide substitution at the 3'-splice junction of the 14th intron of the UDP-glucose pyrophosphorylase 1 (UGPase1; EC2.7.7.9) gene, which causes the expression of two mature transcripts with abnormal siz...

متن کامل

GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice.

Callose plays an important role in pollen development in flowering plants. In rice, 10 genes encoding putative callose synthases have been identified; however, none of them has been functionally characterized. In this study, a rice Glucan Synthase-Like 5 (GSL5) knock-out mutant was isolated that exhibited a severe reduction in fertility. Pollen viability tests indicated that the pollen of the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007